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ABSTRACT: A remarkably simple model of civil violence has recently been built and studied 
by Joshua Epstein at the Center of Social and Economic Dynamics in the US using a very 
simple cellular automata (CA) simulation. However, the model and its analysis were based on 
the assumption that the entities have purely random movement, which limits the degree of 
realism of the model. DSTO, through LOD and DSAD, has access to a more sophisticated CA 
model known as MANA, developed by the Defence Technology Agency in NZ. Recently, 
DSTO has extended the original US model and analysis to incorporate various movement 
strategies of the entities by using the MANA simulation. This paper describes the model and the 
analysis of the data, which included graphical, statistical and game theory techniques, and which 
provide some initial thoughts on the effectiveness of various strategies for managing civil 
violence. These results may also have applicability in other Operations Other Than War 
(OOTW) scenarios, including peace keeping and counter-terrorism. Various possible extensions 
to the extended MANA model and analysis are also covered.  

 
 
1. Introduction 
 
1.1 Epstein Civil Violence Model 

In this highly idealized model [1], a central 
authority seeks to suppress a decentralized 
rebellion. The model contains “Quiets” 
(members of the general population), 
“Actives” (those quiets who have become 
actively rebellious), and “Cops” (forces of 
the central authority who seek out and 
arrest actively rebellious agents). All 
entities possess local vision (modelled by a 
finite radius) and move randomly over a 2D 
lattice (representing some region). Such 
models are known as cellular automata 
models. 
 
Therefore, over time, members of the 
general population can transition to various 

states (see Figure 1 Q = Quiets, A = 
Actives, J = Jail) and it was the central 
authority’s aim to maximise the number of 
quiets, while the rebel’s aim was to 
maximise the number of actives.  
 
 
 
 
 

Figure 1. Epstein Model Transitions 

Q A J 
 
The rules that govern the transitions are as 
follows: the quiets (actives) will become 
active (quiet) if their (estimated) probability 
of being arrested is less (greater) than a 
certain threshold. This estimate is assumed 
to increase with the ratio of cops to actives 
within the prospective rebel's vision, and 
was given by: 
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P = 1-exp[-k(C/A)]             (1) 
 

where exp stands for exponential function, 
k is a constant to be set, C is the number of 
Cops and A is the number of Actives. The 
constant k is set to ensure a plausible 
estimate (say P=0.9) when C=1 and A=1.  
 
For a fixed number of cops, the agent's 
estimated arrest probability falls the more 
actives there are, and this simple idea 
played an important role in the analysis.  
 
The cops (which never defect to the 
revolution in this model) had one simple 
rule, which was to inspect all sites within its 
vision and randomly arrest an active. An 
arrested active was then released after a 
finite duration and was assumed to be 
active. 
 
The question Epstein explored was whether 
this highly idealized model was sufficient to 
generate recognizable macroscopic 
revolutionary dynamics of fundamental 
interest, to which the answer was yes.  
 
1.2 Motivation for Current Study 

The dynamics of the Epstein model 
(transitions between quiets and actives and 
jailed) are essentially governed by the 
fluctuating spatial densities of the quiets, 
actives and cops as they randomly move 
about the region. For example, pockets of 
relatively low cops densities are ‘ripe’ for 
rebellious activities and these can grow 
unchecked, as observed by the former 
China president, Mao Tse Tung (“a single 
spark can cause a prairie fire”), and which 
is why freedom of assembly is often the 
first casualty of repressive regimes as 
suggested by Epstein [1]. 
 
Given the importance of relative spatial 
densities, it is therefore conceivable that 
each side might improve their chances of 
success if they adopt some movement 
strategy that is not random. It is also 

somewhat artificial to assume the cops do 
not react (probably by chasing) to detected 
actives and vice versa.  
 
DSTO has been using a more sophisticated 
cellular automata model, known as MANA 
[2], which importantly includes non-
random movement strategies. By using the 
MANA simulation [3], DSTO, through 
LOD [4] and DSAD [5] has extended the 
original Epstein Civil Violence model to 
incorporate various movement strategies 
(random and non-random) of the active and 
cops entities within the model.  
 
This paper describes the extended Epstein 
model, comments on the effectiveness of 
various movement strategies for managing 
civil violence, and, finally makes 
suggestions on possible further extensions 
to the model. 
 
A broader motivation for this study is the 
observation that DSTO does not possess a 
robust set of modelling and analysis tools 
for OOTW type scenarios (including peace 
keeping, criminal and terrorist networks) 
although defence planning for these 
operations are becoming more frequently 
required. This study may shed some light 
on whether cellular automata models are an 
appropriate enabler for this type of analysis. 
 

2. MANA Civil Violence Model 
 
2.1 Modelling State Transitions 

There are two differences in the state 
transition diagram (see Figure 2) from the 
Epstein model. The first is that there is no 
direct transition from active back to quiet. 
This represents a somewhat more zealous 
active entity than in the Epstein model and 
will provide more of a test of the cops’ 
strategy. The second difference is that 
jailed actives are assumed to be quiet on 
release, which is meant to represent some 
form of rehabilitation. 
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Also, movement for cops and actives are 
simulated in MANA by a set of weightings, 
which describe an entity’s propensity to 
move toward or away from other cops, 
actives and/or quiets. To allow 
representation of a strategy by a scalar 
parameterisation, we define: 

 
 
 
 
 

 
Q A J

Figure 2. MANA Model Transitions 
  
  The MANA modelling of the active-to-

jailed state transition is essentially the same 
as in the original Epstein model, in that a 
single (randomly selected) active within the 
cop’s vision is arrested. The jailed-to-quiet 
transition is also easily modelled in MANA 
by assigning a duration to remain in the 
jailed state and assigning the quiet state as 
the fallback state at the end of the duration.  

λ = -                        µ =   
WCops

WQuiets

WActives 
WQuiets 

    
as the movement strategies for the actives 
and cops, respectively. In this study, we 
assume that WCops is negative and WActives 
and WQuiets are both positive. That is, 
actives are repelled from cops, cops are 
attracted to actives, and both may have 
some attraction to the quiets.  

 
However, MANA is incapable of modelling 
the quiet-to-active transition as governed by 
the arrest probability defined in equation 
(1). The scheme used in MANA to 
approximate this situation is governed by 
the entity interaction probabilities. 

 
Furthermore, we assume that  
 

-WCops + WQuiets = 1 
 

 for the actives, and that  
To simulate a higher probability of a quiet 
becoming active when in a high active-to- 
cops density region, we assign a probability 
of a successful cops-to-active interaction to 
imply a temporary subduing of the active 
(with a subdued active unable to interact), 
and a probability of a successful active-to-
quiet interaction to imply a transition to 
active of the quiet. Thus, in a high active-
to-cops density region, there will be 
relatively more unsubdued actives that will 
then have a relatively higher probability of 
transitioning a quiet to the active state. 

 
WActives + WQuiets = 1 

 
for the cops, which models a trade-off 
between avoiding (or chasing) the 
opposition and inciting (or protecting) the 
general population. 
 
For example, a large value of λ and small 
value of µ would represent a situation 
where actives are very cautious of the cops 
but the cops are more interested in 
protecting the general population. 

  
2.2 Movement Strategies 2.3 Baseline Scenario 

Movement of the quiet entities is assumed 
to be random (as in the Epstein model) for 
two reasons. First, we assume the quiets 
have no affinity to either the active or cop 
entities. Second, we wish to concentrate on 
the dynamics between the active and cops 
movement strategies.  

Figure 3 on the next page shows a screen 
shot of the baseline scenario. The scenario 
begins with twelve cops, and a population 
of two hundred, of which twenty are 
actively rebellious and the remainder are 
quiets. The map area represents a grid of 
200 squares by 200 squares. 
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3. Analysis of Data 

 

 
In the first part of the analysis, we will 
investigate the effectiveness of various 
movement strategies for both the Cops and 
Active as defined by the parameters λ and µ 
using the baseline MANA scenario. From 
the results of the resulting payoff matrix we 
can deduce the preferred strategies for both 
the Cops and Actives. 
 
Using these preferred strategies, we then 
study the impacts of the more resource 
demanding options of increased jail times 
and number of cops on our civil violence 
model.   
 
Each simulation is run to 2000 time-steps to 
allow the system to reach equilibrium and 
the mean percentage of quiets in the 
population over 50 replications is used as 
the primary measure of effectiveness. We 
treat the scenario as a two-person (cops and 
actives) zero-sum game (thus the actives 
wish to minimize the percentage of quiets 
in the population).  

 
Figure 3. Baseline Mana Civil Violence 
Scenario 
 
Table 1 lists a summary of each squad 
properties. Jailed actives are detained for a 
fixed term of 50 time-steps during which 
they play no part in the scenario.  
 3.1 No Strategies 

 Cops Actives Quiets 
Number of 
Agents 12 20 180 

Sensor Range 50 50 10 

Interaction 
Range 10 10 0 

Probability 
Subduing 
Actives 

50 0 0 

Probability 
Converting 
Quiets 

0 10 0 

This is akin to the Epstein model, whereby 
both actives and cops move randomly. In 
this case, we set WCops, WActives and WQuiets 
all to zero. We investigate this case first 
since it provides a baseline result to 
compare the subsequent analyses (assuming 
the effectiveness of some strategy is better 
than a random strategy). It also mimics as 
best as possible the original Epstein model. 
 
Figure 4 illustrates the time-series of the 
MANA civil violence model population 
(quiets, jailed and actives), averaged over 
the 50 replications, for the no strategies 
case. 

 
Table 1. Summary of Squad Properties 
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Figure 4. Population Time-Series with 
No Strategies 
 
Figure 4 shows that in the first 500 time-
steps, there is a rapid decline in the average 
number of Quiets. The reason for this is that 
with a relatively low number of Cops in 
random motion, there are likely to be areas 
where the cops’ density is low and the 
concentrations of actives are high (i.e. low 
local C/A ratios). As a result, the Quiets in 
these areas find it rational to join the 
rebellion and thus, catalyse a local outburst 
of actives. This is why there are an equally 
fast growing number of actives.  
 
Figure 4 also shows that an equilibrium 
average population mix is achieved (in this 
case was before the 2000 time-step 
simulation end). This is a result of supply 
and demand types of relationships that exist 
in this model (and more generally in models 
of population dynamics or predator-prey 
systems). Over time, the Actives have a 
dwindling pool of potential new recruits 
(the Quiets), while at the same time the 
increased number of Actives will generally 
result in more being arrested (even with the 
Cops moving randomly). These two 
feedback loops control the dynamics of the 
system, and a stable equilibrium results. 
Under the no strategies case, the cops 
perform badly, with only approximately 

12% of the population remaining quiet (and 
approximately 78% active and the 
remaining 10% in jail).  
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3.2. Actives Adopt Various Strategies 
 
The aim of this paper is to investigate the 
effectiveness of various movement 
strategies of the two players (cops and 
actives). We hypothesise that some strategy 
is better than no strategy, and begin by 
allowing the actives to possess a movement 
strategy as defined by the parameter λ, but 
keeping the cops fixed with no strategy.  
 
Figure 5 illustrates the variation of the 
average equilibrium percentage of the 
population that is quiet with the actives 
movement strategy parameter λ.  
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Figure 5. Effectiveness of Actives 
Strategy 
 
As shown in the graph, having either a low 
λ value (i.e. a relatively high attraction to 
the quiets) or a high λ value (i.e. a relatively 
high repulsion from the cops) is not the best 
strategy for the actives. In fact, if the 
actives choose to just chase the quiets and 
not run away from the cops (i.e. λ = 0) this 
produces the same effectiveness than if they 
used no strategy. More importantly, both of 
these strategies would give the actives their 
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worst-case result (12% quiets as mentioned 
above). 

Having peaked at approximately 72%, the 
average number of actives reduces for a 
short period (to about 48%) and then grows 
linearly (back to 72%) for the remaining 
simulation time. The reason for the initial 
decline is that the number of quiets 
remaining was small and thus the actives 
could not recruit the quiets any faster than 
the cops were jailing the actives. 
Essentially, the active population had 
reached an unsustainable level. However, in 
time, those jailed actives were released into 
the population (as quiets), and Figure 6 
indicates that these were immediately 
converted by the (still relatively large) 
population of actives.  

 
The best strategy for the actives occurs at 
the minimum of the graph, which occurs 
when λ ≈ 5, that is the repulsion from the 
cops is about five times stronger than the 
attraction to the quiets.  
 
Under this strategy, the actives can improve 
their effectiveness by reducing the average 
percentage of quiets in the population to 
approximately 3%. Figure 6 illustrates the 
time-series of the population (quiets, jailed 
and actives), averaged over the 50 
replications, for the optimal active strategy 
case, from which we can deduce the 
reasons for the improved effectiveness of 
the actives.  

 
3.3. Cops Adopt Various Strategies 
 
Having examined the possible benefits of 
using some form of movement strategy for 
the actives, we now reverse the situation 
and examine the situation for the cops. 
Figure 7 illustrates the variation of the 
average equilibrium percentage of the 
population that is quiet with the cops’ 
movement strategy parameter µ, but 
keeping the actives fixed with no strategy.  
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Figure 6. Population Time-Series with 
Optimal Active Strategy 

 
 

  
Figure 6 indicates a more dynamical system 
than the no strategies case, with three 
dominant features. The first feature to note 
is the larger initial ‘growth-rate’ of the 
actives compared with the no strategies 
case. This is consistent with the actives 
having the ability to both avoid the cops 
(reducing the actives ‘death-rate’) and 
chase the quiets (increasing the actives 
‘birth-rate’). 
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Figure 7. Effectiveness of Cops Strategy 
 
Similar to the case for the actives, almost 
any strategy for the cops is better than no 
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strategy at all (note the cops are trying to 
maximise the percentage number of quiets), 
the exception being very small values of µ 
(ie a strong affinity solely to the quiets).  
 
More importantly, Figure 7 suggests that 
vastly improved effectiveness (in fact 100% 
effectiveness) can be achieved by the cops 
if they chose their strategy wisely. Unlike 
the case for the actives, the preferred 
strategy for the cops does not lie at a 
turning point in the graph; rather it lies at an 
extrema. The graph indicates that any µ 
value greater than 1.5 will allow the cops to 
be 100% effective. Hence, the preferred 
strategy for the cops to take is to almost 
exclusively chase the actives, and have little 
(or no) interaction with the quiets. 
 
Figure 8 illustrates the time-series of the 
population (quiets, jailed and actives), 
averaged over the 50 replications, for the 
optimal cops strategy case, from which we 
can deduce the reasons for the improved 
effectiveness of the cops.  60
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Figure 8. Population Time-Series with 
Optimal Cops Strategy 
 
The initial dynamics is similar to the 
previous cases, whereby the low local cops 
to active ratios gives rise to an initial 
growth in the active population. 
 
However, with the actives using no strategy 
and the cops using their optimal strategy, 
the cops are able to arrest the actives faster 
than the new actives are recruited and 
eventually all the actives are removed. The 

end result is a population with all members 
quiet. 
 
We also note from Figure 7 that the 
effectiveness of the cops strategy is 
extremely sensitive around the value of 
µ=1, where the cops give equal weighting 
towards chasing the actives and protecting 
the quiets. Values of µ < 1 (greater 
emphasis on protecting quiets) tend to yield 
very poor results while values of µ > 1 
(greater emphasis on chasing actives) tend 
to yield very effective results.  
 
3.4. Both Adopt Various Strategies 
 
The above analysis has demonstrated that 
one side or the other (cops or actives) can 
significantly improve their effectiveness by 
adopting a strategy. From the baseline (both 
sides using no strategy) result of 12% quiet 
population, we have seen how the actives 
can reduce this to 3% and how the cops can 
increase it to 100%. However, this has 
assumed the other side has used no strategy. 
Of interest here is the interplay that results 
if both sides are allowed to adopt various 
strategies.  
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Figure 9 presents the payoff matrix (again, 
average equilibrium percentage of quiets in 
the population) for combinations of λ and 
µ. Depending on the combination of 
strategies, any possible result could 
eventuate. A method for determining a 
suitable strategy in this situation is provided 
by the mathematical theory of games [6]. In 
game theory, there are four criteria that can 
be used to select strategies. These are: 
 

• Criterion of pessimism 
• Criterion of optimism 
• Criterion of least regret 
• Criterion of rationality. 

 

 
 



Land Warfare Conference 2002  Brisbane October 2002 
 

 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

0

20

40

60

80

100

0 500 1000 1500 2000

Time (Steps)

A
ve

ra
ge

 R
em

ai
ni

ng
 Q

ui
et

s (
%

) avg Quiets
avg Jailed
avg Actives

Figure 10. Population Time-Series with 
Optimal Cops and Active Strategies 

Figure 9. Payoff Matrix under Various 
Cops and Active Strategies 

  
However, there is an important difference 
in Figure 10. Here, the jailed population is 
significantly higher (and correspondingly, 
the active population lower) than in the no- 
strategies case. Thus, even though the 
effectiveness of the cops is only marginally 
improved (quiet population increasing from 
12% to 15%), the active population is 
almost halved (from 78% to 43%). 

The most common is the first, also known 
as the maximin or Wald criterion, which 
represents a conservative decision-making 
approach. Under this criterion, each side 
chooses its strategy that offers the best-
guaranteed payoff (ie maximises the 
minimum payoff).  
 
Applying this criterion to Figure 9, we find 
that the preferred strategies for the two 
sides to be: λ=4 for the actives and µ = 5 
for the cops. Interestingly, these are 
approximately the same strategies as 
determined using the ‘one-player’ versions 
above. The resulting payoff when both 
sides use their optimal strategies is an 
average equilibrium population of quiets of 
approximately 15%. Figure 10 illustrates 
the time-series of the population (quiets, 
jailed and actives) for this case.  

 
3.5 Resource Options 

Using the optimal movement strategy for 
the actives and the cops (λ = 4 and µ = 5), 
we varied the jail time of the arrested 
actives and the number of cops to study the 
impact these variables have on the system. 
Figure 11 displays the variation in the 
average equilibrium percentage of quiets in 
the population to changes in the jail time. 
  The graph suggests that the effect of jail 
time is approximately linear. With the 
default number of cops (12), the default jail 
time (50) would need to be increased by a 
factor of 4 to 5 to enable that number of 
cops to be fully effective. 

The form of each curve in Figure 10 is 
similar to that in the no strategies case 
(Figure 4), changing monotonically before 
quickly reaching equilibrium states. The 
resulting final quiet population is only 
marginally higher at 15%. Essentially, the 
strategies of each side ‘nullify’ the other 
and the behaviour of the system is similar 
to that if each side used no strategies.  
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Figure 11. Effectiveness of Increased Jail 
Time 
 
Figure 12 similarly displays the variation in 
the average equilibrium percentage of 
quiets in the population to changes in the 
number of cops. 
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Figure 12. Effectiveness of Increased 
Number of Cops 
 
Here we see a less linear response than the 
variation with jail time. The variation with 
the number of cops appears to approximate 
the classical ‘S-curve’ that is characteristic 
of the principle of diminishing returns. 
With this, the specific interest is 
determining the ‘middle’ of the S, which 
represents the region that provides the 

maximum increase in effectiveness (the 
‘marginal return on investment’). Figure 12 
indicates that this region is between 12 and 
20 cops.  
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4. Summary 
 
The aim of this study was to extend a 
previously designed cellular automata 
model of civil violence using the MANA 
simulation to investigate the impact of 
various strategies or resource options 
available to the cops and actives.  
 
Standard statistical and game theory 
techniques were used to analyse the 
resulting model output, using the average 
equilibrium percentage of quiets in the 
population as the measure of effectiveness. 
The results for the various strategies are 
summarised in Table 2.  
 

  Actives 
  None Optimal 

None 12% 3% Cops Optimal 100% 15% 
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Table 2. Summary of Strategy Effects 
 
The optimal strategy for the actives is to 
have a mixed strategy of generally avoiding 
the cops but also, to a lesser extent, 
attempting to mix with the quiet population. 
The optimal strategy for the cops on the 
other hand appears to be to simply chase 
the actives. Table 2 indicates that if one 
side does not use its optimal strategy, the 
opposing side can gain a significant 
advantage.  
 
The subsequent impact of two alternative 
options, increasing the jail time of arrested 
actives, or increasing the number of cops, 
was then analysed. Although jail time 
appeared to provide a ‘linear return on 
investment’, the variation with the number 
of cops exhibited a non-linear response 
characteristic of the principle of 
diminishing returns. This suggests that an 
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investment in additional cops numbers 
(provided this is not in the ‘tails’ of the 
curve) might be more effective than a 
policy of lengthier jail times. 
 
Examination of the time-series plots of the 
population dynamics revealed two issues 
that should receive attention in subsequent 
analytical work. The first is the possible 
existence of ‘tipping points’ in the system 
(see the second turning point in Figure 6), 
which governs whether the situation falls to 
one side or the other. The other is the 
possible widening of the measure of 
effectiveness to include some functional of 
the number of actives and those in jail 
(compare Figures 4 and 10) to take a more 
holistic view of the civil violence model. 
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